Carter Steinhoff

Donate
Carter Steinhoff's latest activity
published Human Clinical Trials 2019-03-24 23:56:20 -0400

Participate in Clinical Trials

Human Clinical Trial

Hand raised

Foregen's major objective is to fund a clinical trial of foreskin regeneration in the circumcised adult male.

The Background

Medical research has made true dermal regeneration possible to a greater extent than ever before (for more on the science side of things, see our page on The Science of Regeneration). However, foreskin regeneration has not yet been tried, despite our knowledge that foreskin fibroblasts respond extremely well to regenerative technologies which create new skin. Foregen believes that it is time such a trial was undertaken.

What kind of trial?

Foregen will conduct a trial to reattach regenerated foreskins to circumcised adult males to restore the vascularity, nerve endings, and function that are excised during circumcision.

How will we get there?

Foregen's road map towards our ultimate goal of male foreskin regeneration is as follows:

  1. We will raise funds
  2. We will use our scientific panel to find the facility and recruit the researchers who are most likely to perform research which will lead to a clinical trial
  3. We will complete any necessary laboratory and pilot research and publish these results in a peer-reviewed journal
  4. Finally, we will carry out a clinical trial

We are currently on step 3 of our journey

Step 3 consists of fully regenerating animal foreskins and then conducting the same experiments on human foreskin. These results will be published in a peer-reviewed journal.

Of course, this road map is a simplification. There are complexities and uncertainties in such a trial as there are in any clinical trial that pioneers something new. Foregen cannot guarantee the final outcome or predict unforeseen obstacles that may fall in our way. However, Foregen recognizes the need for such a trial. We know how much success dermal regeneration has had in other areas, so we have good reason to believe that it will succeed in ours. While the outcome is not, and cannot, be certain, it is clear that we must try.

Interested in Participating? Read below...

The trials will be controlled and have the proper governmental approval. The trials will not be conducted by Foregen personnel, but rather by medical professionals adhering to the highest ethical standards of practice and research.

Currently we are actively recruiting trial participants who are:

  • Males over the age of 18
  • Circumcised, but not otherwise suffering from other health problems

A clinical trial is estimated to take up to eight weeks, though not all of that period will be spent under medical supervision.  If you satisfy the above requirements and are interested in volunteering for this trial, we would be happy to hear from you. All medical care will be provided free of charge and you will be able to withdraw from the trial at any stage.

Volunteering for this clinical trial makes you eligible to benefit first from the most advanced medical technologies available for foreskin regeneration.  However, such participation, like all medical procedures, carries some risk. The medical professionals conducting the trial will discuss with you the full range of options, possibilities, and dangers in order to assess your suitability for a trial. They will also, of course, need to obtain your full informed consent to participate in the trial.
Any person who indicates an interest is not under any obligation if you lose interest, you will be removed from our list of potential participants upon request. (But we don’t think you’ll want to!) 

Still Interested? Create an account and signup below!

* Please note, this does not enroll you in future clinical trials, it simply ensures you receive relavent information regarding those trials as it becomes available.

Sign up
published Volunteer in About 2019-03-10 04:41:55 -0400

Volunteer

Become a Volunteer!

As we expand, were always looking for skilled and dedicated members to recruit to our workforce. If you are a doctor, an artist, a lawyer, or most importantly have a passion for the cause and want to be boots on the ground at future Foregen events, please drop us a line in the volunteer box with the skills you'd like to volunteer and we'll do our best to find you a place!

Interested in Helping the Cause? Signup Below:

Become a volunteer
published Regeneration in Education 2019-01-06 02:39:59 -0500

Science of Regeneration

Science of Regeneration

Foregen was brought into existence by its founders’ desire to harness regenerative medicine’s amazing advances over the last fifteen years. Under certain circumstances, dermal replacement techniques can now restore original tissue to those who have lost it.

Below is a brief explanation in layman’s terms of the process of regeneration - for more complete information on the science of regeneration, follow the links that are embedded throughout this page.

For an even faster overview, here’s a quick video (3 minutes) on regeneration.

 

Regeneration Defined

Regeneration is the ability of the body to regrow tissue when it is lost by trauma, disease, or other misadventure. The most famous example of this is the salamander, which can reproduce whole arms, legs, tails, and other body parts within days following their amputation. Salamanders are, however, not the only creatures with such powers - humans have them naturally as well (at least for a time) while developing in the womb. If a developing baby loses a finger or another of its extremities, it simply grows it back without forming scar tissue. Indeed, very young neonatal babies can sometimes do the same if injured shortly after being born. Even in adults, kidneys and livers retain some of this regenerative capacity when they are damaged. 

 

Aside from our kidneys and livers, why can’t humans regenerate as adults?

Salamander limb regeneration process

While we don’t know fully why we cannot regenerate after birth, existing theories may shed some light on the issue.

One theory is that stopping the regenerative process is critical to allow a much more powerful survival aid to take its place: scarring. A scar allows a wound to seal quickly, thus preventing death from infection or loss of blood. In evolutionary terms, the ability to scar helped our ancestors survive. Put simply, for primitive man there was little benefit in having a body that regenerated an amputated arm (which takes months) if, in the meantime, he bled to death. Survival by scarring was, therefore, a critical step forward in evolutionary terms, not just for man but for all mammals.

Scarring is not without costs, however. First, scar tissue inhibits any new regrowth by regeneration; and secondly, scar tissue is inherently different from the normal tissue that once was there (as anyone with a scar will know), both in appearance and in function. It stops us from dying when wounded, but is useful for little else functionally. 

 

In that case, how is it possible to regenerate now that we are adults?

That is the question to which biomedical research has devoted itself for many years. Fortunately, we now have some answers. The first is the discovery that the unique DNA structure present in every cell represents (among other things) a blueprint or map of our whole body, not just information relevant to that cell.  This blueprint organizes the body’s growth in the womb by telling cells what comes next in the growth process. This body map is created in the very first cell we have and remains constant throughout our lives, unaltered even if our body becomes wounded, damaged, or amputated in some way. As such, when we are wounded, our body still has a record of what should have been there, a record that regenerative medicine uses to have the body remake itself.

The second key is learning how to stop scarring from happening. When we are wounded, our body automatically instructs the cells at the wound site to form scar tissue. As stated above, this function was of importance to evolution but marked the end of natural regeneration in our body. Regenerative medical techniques have shown that it is possible to turn off that instruction from the brain and instead send a new instruction to wound site cells  to regrow what was taken away, using the blueprint present in our DNA, just as if the body were still in the womb. 

 

How do we induce regeneration from our DNA?

There are two critical elements in regeneration: stem cells and the extra-cellular matrix or ECM. Of course, you have heard of stem cells. Traditionally, stem cells were derived from aborted fetuses, which is why so much controversy surrounded them. Recently, scientists discovered a simple method to revert adult skin cells back to embryonic stem cells. This is a feat that cannot be overstated. The less familiar term, the extra-cellular matrix, is also a necessary component for regenerating tissues. The ECM can be thought of as the skeleton for a tissue. It provides an attachment point for cells and gives structures their three-dimensionality. It also facilitates cell-to-cell communication and stem cell differentiation as well as providing the necessary vascularity to nourish cells and remove waste. When implanted correctly in the human body, the ECM prompts the surrounding cells to repair the tissue instead of creating inflammation and scar tissue. The ECM can be engineered, usually with a 3D printer, or obtained by stripping the cells of a donated tissue with specialized detergents. (To read more about the current progress of bioprinting, click here)

The standard practice in regenerating a tissue is to obtain the ECM of the tissue you wish to regenerate and then seed it with the appropriate layers of cells. The experiment is confined within an environment that mimics that of the human body until the cells populate the entire structure. Each particular tissue has specific needs in terms of cells and growing environment, but this general model has proven extremely successful in regenerating even the most difficult of organs, such as the heart, liver, and kidneys.

 

What has regenerative medicine accomplished so far?

Regenerative medicine has accomplished feats unimaginable just a decade ago. Below is a brief list of significant accomplishments in the field:

These feats of scientific progress demonstrate that Foregen’s mission to regenerate foreskins and reverse circumcision is possible. We know the technology exists. In fact, we have made tangible progress towards it. The main obstacle in achieving foreskin regeneration is aligning the overwhelming demand for a cure for circumcision with the correct scientific personnel. That is why Foregen was founded, and that is what Foregen will achieve. 

 

So when is Foregen going to regenerate a foreskin?

Very soon, we hope! We already have the ECM from decellularizing animal foreskins.  The next step of our work, decellularizing human foreskin tissue, has been published in a peer reviewed research paper in SAGE Journal of Tissue Engineering, with very promising results.  This step was very important for creating a viable ECM that maintains the structures of the foreskin for regeneration.  This was a success and enables us to move on to our next phase, which will be to conduct a preclinical trial with an animal model to test for biocompatibility.  In the short term, we hope to fully regenerate these human foreskins. Once we have accomplished that, our goal is to advance onto human clinical trials as soon as it is safe to do so.

 

Will the new tissue have full function?

We believe so. In other regenerative surgeries, the new tissue reintegrates itself into the body, which recognizes the tissue as its own and does not reject it via the immune system as it would for grafted skin or transplanted organs. Those who have already undergone regenerative therapies have had amazing success. For example, those who have received regenerated bladders or tracheas, as mentioned earlier, now have fully functioning organs!  The nerve connections severed by the trauma of the surgery (in our case, circumcision) were reconnected to the body with the new implanted tissue. We expect Foregen to achieve similar results in our clinical trial. 

 

What can I do to help?

We at Foregen appreciate your willingness to help us in our mission to apply state-of-the-art regenerative therapies to you or a loved one’s most intimate organ. We are moving as fast as we can, but to stay up to date with all of our advancements, please sign up for our newsletter in the box on the homepage. Also, we appreciate your tax deductible donations which fund our continued research.  Lastly, please share Foregen with your friends and family and over social media to help spread the word. By helping Foregen, you bring foreskin regeneration one step closer to becoming a reality.

published Pledge 2019-01-03 20:48:03 -0500

Pledge

Pledge now